Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells
نویسندگان
چکیده
This work represents a step towards reliable algorithms for reconstructing micro-morphology of electrode materials of high-temperature protonexchange membrane fuel cells and for performing pore-scale simulations of fluid flow (including rarefaction effects). In particular, we developed a deterministic model for a woven gas diffusion layer (GDL) and a stochastic model for the catalyst layer (CL) based on clusterization of carbon particles. We verified that both developed models accurately recover the experimental values of permeability, without any special ad-hoc tuning. Moreover, we investigated the effect of catalyst particle distributions inside the CL on the degree of clusterization and on the microscopic fluid flow, which is relevant for degradation modelling (e.g. loss of phosphoric acid). The three-dimensional pore-scale simulations of fluid flow for the direct numerical calculation of ∗Corresponding author Email addresses: [email protected] (Uktam R. Salomov), [email protected] (Eliodoro Chiavazzo), [email protected] (Pietro Asinari) URL: http://staff.polito.it/pietro.asinari/ (Pietro Asinari), http://www.polito.it/small (Pietro Asinari) Preprint submitted to Computers and Mathematics with Applications August 26, 2013 permeability were performed by the Lattice Boltzmann Method (LBM).
منابع مشابه
[Article] Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells
This work represents a step towards reliable algorithms for reconstructing micro-morphology of electrode materials of high-temperature protonexchange membrane fuel cells and for performing pore-scale simulations of fluid flow (including rarefaction effects). In particular, we developed a deterministic model for a woven gas diffusion layer (GDL) and a stochastic model for the catalyst layer (CL)...
متن کاملThree Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell
A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...
متن کاملDynamic investigation of hydrocarbon proton exchange membrane Fuel Cell
Sulfonated polyether ether ketone (SPEEK) is categorized in a nonfluorinated aromatic hydrocarbon proton exchange membrane (PEM) group and considered as a suitable substitute for common per-fluorinated membranes, such as Nafion, due to wider operating temperature, less feed gas crossover, and lower cost. Since modeling results in a better understanding of a phenomenon, in this study a dynamic o...
متن کاملImpact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode
Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...
متن کاملModeling and simulation of a new architecure stack applied on the PEM Fuel Cell
To simulate a new economical architecture for PEM fuel cell and investigate the effectiveness of the introduced structure on the performance, computational fluid dynamics (CFD) code is used to solve the equations for a single domain of the cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 67 شماره
صفحات -
تاریخ انتشار 2014